Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

\{Tris[4-(1H-pyrazol-3-yl)-3-azabut-3enyl]amine\}iron(II) diperchlorate monohydrate

Michaele J. Hardie, Colin A. Kilner and Malcolm A. Halcrow*

School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, England Correspondence e-mail: m.a.halcrow@chem.leeds.ac.uk

Received 29 January 2004
Accepted 20 February 2004
Online 20 March 2004

In the title complex, $\left[\mathrm{Fe}\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{10}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, the complex cation adopts a capped trigonal antiprismatic stereochemistry, with a long Fe-amine interaction [2.7468 (16) A]. The Fe centre in the asymmetric unit is fully high-spin at 100 K . Hydrogen bonding assembles dimeric units, which are then linked by further hydrogen bonding into chains running parallel to the crystallographic a axis.

Comment

We have been interested for some time in the spin-state transitions shown by iron(II) complexes of polydentate pyra-zole-containing ligands (Holland et al., 2001; Holland, Barrett et al., 2002; Holland, McAllister et al., 2002; Elhaïk et al., 2003; Money et al., 2003, 2004; Smithson et al., 2003). During this work, we noted that both iron(II) and iron(III) complexes of tris[4-(imidazol-2-yl)-3-aza-3-butenyl]amine, the Schiff base derived from the reaction of tris(2-aminoethyl)amine (tren) with three equivalents of imidazole-2-carbaldehyde, and closely related derivatives exhibit interesting spin-state transitions (Nagasato et al., 2001; Sunatsuki et al., 2001; Ikuta et al., 2003; Yamada et al., 2003; Yukinari et al., 2003). We therefore decided to investigate the iron chemistry of the pyrazolecontaining analogue tris[4-(1H-pyrazol-3-yl)-3-aza-3-butenyl]amine. We found that reactions of this ligand with hydrated $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}$ in MeOH yielded a dark-brown precipitate. Some of this material proved soluble on extraction with acetone, giving a dark-orange solution that afforded orange crystals of the title compound, (I), following diffusion of diethyl ether vapour into the mixture. Presumably, partial reduction of the $\mathrm{Fe}^{\mathrm{III}}$ content of the mixture by the MeOH solvent took place during the reaction. Compound (I) was subsequently synthesized in higher yield by direct treatment of the same ligand with $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. No complexes of tris[4- $(1 \mathrm{H}-$ pyrazol-3-yl)-3-aza-3-butenyl]amine have been reported before, although $\mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Co}^{\mathrm{III}}$ complexes of its trimethylated
derivative, tris[4-(5-methyl-1H-pyrazol-3-yl)-3-aza-3-butenyl]amine, have been structurally characterized (Paul et al., 2000, 2002).

(I)

The coordination geometry about the Fe centre in (I) (Fig. 1) is best described as a capped trigonal antiprism. There are six $\mathrm{Fe}-\mathrm{N}$ bonds of 2.1563 (16) -2.2547 (16) \AA (Table 1) to the imine and pyrazole N -atoms donors, these lengths being typical of a high-spin $\mathrm{Fe}^{\mathrm{II}}$ centre. Amine atom N2 lies at a much longer distance [2.7468 (16) Å] from the metal atom, at a position approximately central above the triangular face formed by atoms $\mathrm{N} 5, \mathrm{~N} 14$ and N 23 . This distance is at the lower end of the range of capping $\mathrm{Fe}-\mathrm{N}$ distances seen for high-spin $\mathrm{Fe}^{\mathrm{II}}$ complexes of related heptadentate tripodal ligands. As can be seen from Table 3, there is an approximate positive correlation in this class of compound (for the ligands shown in the scheme below) between contraction of this capping $\mathrm{Fe}-\mathrm{N}$ bond and an opening out of the capped face of the trigonal antiprism, indicated by an increase in the $\mathrm{N}_{\text {imine }}-$ $\mathrm{Fe}-\mathrm{N}_{\text {imine }}$ angles [N5-Fe1-N14, N5-Fe1-N23 and N14$\mathrm{Fe} 1-\mathrm{N} 23$ in (I)]. However, there is no apparent relation between these structural parameters and whether or not these compounds undergo spin-crossover upon cooling. Although the helical ligand conformation about each Fe atom is chiral, (I) crystallizes as a racemate in the centrosymmetric space group $P 2_{1} / n$.

$R=\mathrm{CH}_{3}, L^{2}$
$R=\mathrm{CPh}_{3}, L^{3}$

$R=\mathrm{CH}_{3}, L^{5}$
$R=\mathrm{Ph}, L^{6}$

Two of the three pyrazole NH groups in (I) are hydrogen bonded to two different lattice water molecules, forming N9$\mathrm{H} 9 \cdots \mathrm{O} 40$ and $\mathrm{N} 18-\mathrm{H} 18 \cdots \mathrm{O} 40^{\mathrm{i}}$ interactions [symmetry

Figure 1
The molecular structure of the complex cation in the crystal structure of (I), showing 50% probability displacement ellipsoids and the atomnumbering scheme. All C-bound H atoms have been omitted for clarity.
code: (i) $1-x$, $1-y, 1-z$; Table 2]. The third NH group ($\mathrm{N} 27-\mathrm{H} 27$) hydrogen bonds to atom O31 in one of the two independent ClO_{4}^{-}anions. This same anion accepts a hydrogen bond from water atom $\mathrm{H} 40 A^{\mathrm{ii}}$ [symmetry code: (ii) $x-1, y, z]$. The other water H atom $(\mathrm{H} 40 B)$ hydrogen bonds to the other $\mathrm{ClO}_{4}{ }^{-}$ion in the asymmetric unit. The net effect of these interactions is to assemble two formula units into a hydrogen-bonded dimer about the inversion centre at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ (Fig. 2). These dimers are in turn linked into chains running

Figure 2
A partial packing diagram of (I), showing the centrosymmetric hydrogenbonded dimerization of the formula units in the structure. [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x-1, y, z$.]
parallel to the crystallographic a direction through the Cl 30 / O34 anion, which accepts hydrogen bonds from two different dimer moieties.

Experimental

A solution of the tris[4-(1H-pyrazol-3-yl)-3-aza-3-butenyl]amine ligand was prepared by refluxing a mixture of pyrazole-3-carbaldehyde $(1.00 \mathrm{~g}, 10.4 \mathrm{mmol})$ and tris(2-aminoethyl)amine $(0.51 \mathrm{~g}$, $3.47 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{ml})$ until all of the solid had dissolved. $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.26 \mathrm{~g}, 3.47 \mathrm{mmol})$ was then added to the mixture, yielding a dark-yellow solution. The volume was reduced to $\sim 10 \mathrm{ml}$ by evaporation, and then an excess of diethyl ether was added to yield a yellow-orange precipitate (yield $1.23 \mathrm{~g}, 56 \%$). Recrystallization of the crude product from undried acetone gave orange monohydrated crystals, which lost their water of crystallization upon drying in vacuo over $\mathrm{P}_{2} \mathrm{O}_{5}$. Analysis found: C 34.0, H 3.9, N 22.2%; calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{FeN}_{10} \mathrm{O}_{8}$: C 34.0, H 3.8, N 22.1%.

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{10}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=653.24$
Monoclinic, $P 2_{{ }_{1}} / n$
$a=9.4086$ (1) \AA
$b=22.5317(4) \AA$
$c=12.7279(2) \AA$
$\beta=101.9858$ (6) ${ }^{\circ}$
$V=2639.38(7) \AA^{3}$
$Z=4$
$D_{x}=1.644 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25327

> reflections
$\theta=1.8-27.5^{\circ}$
$\mu=0.84 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Rectangular prism, orange
$0.33 \times 0.23 \times 0.20 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
ω scans
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\min }=0.769, T_{\max }=0.850$
25327 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.099$
$S=1.04$
6004 reflections
370 parameters
H atoms treated by a mixture of independent and constrained refinement

6004 independent reflections 4724 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-29 \rightarrow 29$
$l=-16 \rightarrow 16$

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.047 P)^{2}\right.
$$

$+1.086 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.34 \mathrm{e}_{\mathrm{m}} \AA_{\circ}^{-3}$
$\Delta \rho_{\text {min }}=-0.51 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Fe} 1-\mathrm{N} 2$	$2.7468(17)$	$\mathrm{Fe} 1-\mathrm{N} 17$	$2.2413(17)$
$\mathrm{Fe} 1-\mathrm{N} 5$	$2.1563(16)$	$\mathrm{Fe} 1-\mathrm{N} 23$	$2.1628(17)$
$\mathrm{Fe} 1-\mathrm{N} 8$	$2.2547(16)$	$\mathrm{Fe} 1-\mathrm{N} 26$	$2.2457(16)$
$\mathrm{Fe} 1-\mathrm{N} 14$	$2.1575(17)$		
			$159.82(6)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 5$	$67.23(5)$	$\mathrm{N} 8-\mathrm{Fe} 1-\mathrm{N} 14$	$86.13(6)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 8$	$128.69(5)$	$\mathrm{N} 8-\mathrm{Fe} 1-\mathrm{N} 17$	$91.34(6)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 14$	$68.49(6)$	$\mathrm{N} 8-\mathrm{Fe} 1-\mathrm{N} 23$	$87.25(6)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 17$	$126.82(6)$	$\mathrm{N} 8-\mathrm{Fe} 1-\mathrm{N} 26$	$73.95(6)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 23$	$68.08(6)$	$\mathrm{N} 14-\mathrm{Fe} 1-\mathrm{N} 17$	$106.51(6)$
$\mathrm{N} 2-\mathrm{Fe} 1-\mathrm{N} 26$	$126.16(5)$	$\mathrm{N} 14-\mathrm{Fe} 1-\mathrm{N} 23$	$88.90(6)$
$\mathrm{N} 5-\mathrm{Fe} 1-\mathrm{N} 8$	$74.02(6)$	$\mathrm{N} 14-\mathrm{Fe} 1-\mathrm{N} 26$	$161.53(7)$
$\mathrm{N} 5-\mathrm{Fe} 1-\mathrm{N} 14$	$109.45(6)$	$\mathrm{N} 17-\mathrm{Fe} 1-\mathrm{N} 23$	$88.21(6)$
$\mathrm{N} 5-\mathrm{Fe} 1-\mathrm{N} 17$	$92.64(6)$	$\mathrm{N} 17-\mathrm{Fe} 1-\mathrm{N} 26$	$73.39(6)$
$\mathrm{N} 5-\mathrm{Fe} 1-\mathrm{N} 23$	$104.25(6)$	$\mathrm{N} 23-\mathrm{Fe} 1-\mathrm{N} 26$	
$\mathrm{~N} 5-\mathrm{Fe} 1-\mathrm{N} 26$	$161.14(6)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N9-H9 . . O 40	0.88	2.00	2.848 (2)	160
N18-H18...O40 ${ }^{\text {i }}$	0.88	1.97	2.833 (2)	168
N27-H27 . O 31	0.88	2.03	2.848 (2)	155
$\mathrm{O} 40-\mathrm{H} 40 A \cdots \mathrm{O} 32^{\text {ii }}$	0.854 (19)	2.04 (2)	2.728 (2)	137.1 (16)
O40-H40B $\cdots \mathrm{O} 36$	0.84 (2)	2.07 (2)	2.832 (2)	149 (2)

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x-1, y, z$.

Table 3

Selected structural parameters for high-spin $\mathrm{Fe}^{\mathrm{II}}$ complexes of the ligands shown the second scheme in the Comment.
a is the distance between the Fe and bridgehead N atoms $[\mathrm{Fe} 1-\mathrm{N} 2$ in $(\mathrm{I})], \theta$ is the average of the three $\mathrm{N}_{\text {imine }}-\mathrm{Fe}-\mathrm{N}_{\text {imine }}$ angles, and ω is the average of the three $\mathrm{N}_{\text {heterocycle }}-\mathrm{Fe}-\mathrm{N}_{\text {heterocycle }}$ angles.

Compound	$a(\AA)$	$\theta\left({ }^{\circ}\right)$	$\omega\left({ }^{\circ}\right)$	Spin-crossover on cooling
$\left[\mathrm{Fe}\left(L^{1}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \dagger$	$2.504(6)$	$112.7(2)$	$86.1(2)$	No
$\left[\mathrm{Fe}\left(L^{2}\right)\right]\left(\mathrm{PF}_{6}\right)_{2} \ddagger$	$2.724(4)$	$106.6(3)$	$86.6(3)$	N / a
$(\mathrm{I} \S$	$2.7468(16)$	$106.73(10)$	$87.20(10)$	N / a
$\left[\mathrm{Fe}\left(L^{4}\right)\right]\left(\mathrm{PF}_{6}\right)_{2} \dagger$	$2.753(8)$	N / a	N / a	Yes
$\left[\mathrm{Fe}\left(L^{3}\right)\right]\left(\mathrm{PF}_{6}\right)_{2} \uparrow$	$3.004(8)$	$100.2(7)$	$98.0(6)$	No
$\left[\left\{\mathrm{Fe}\left(L^{5}\right)\right\}_{2} \mathrm{H}_{3}\right] \mathrm{NO}_{3} \dagger \dagger$	$3.122(6)$	$97.93(13)$	$93.13(13)$	Yes
$\left.\left[\mathrm{Fe}\left(L^{5}\right)\right\}_{2} \mathrm{H}_{3}\right] \mathrm{PF}_{6}$ 䉼	$3.169(9)$	$98.30(12)$	$92.95(12)$	Yes
$\left[\mathrm{Fe}\left(L^{6}\right)\right]\left(\mathrm{PF}_{6}\right)_{2} \S \S$	$3.215(8)$	$97.14(13)$	$94.41(13)$	Yes
$\left[\mathrm{Fe}\left(L^{7}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \uparrow \uparrow$	$3.261(5)$	$96.18(14)$	$94.47(13)$	Yes
	$3.280(3)$	$91.5(2)$	$97.7(5)$	No

\dagger Morgenstern-Badarau et al. (2000). \ddagger Yang et al. (2001). § This work; the compound does not undergo spin-crossover above 100 K . - Morgenstern-Badarau et al. (1998). $\dagger \dagger$ Ikuta et al. (2003). 抹 Yamada et al. (2003). §§ Nagasato et al. (2001). ब ब Deeney et al. (1998).

The data set used for the refinement is 99.3% complete to $2 \theta=50^{\circ}$. All H atoms in the complex dication were placed in calculated positions and treated using a riding model, with $\mathrm{Cs} p^{2}-\mathrm{H}$ distances of $0.95 \AA, \mathrm{Csp}{ }^{3}-\mathrm{H}$ distances of $0.99 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.88 \AA$, and all $U_{\text {iso }}(\mathrm{H})$ parameters were fixed at $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. Water atoms $\mathrm{H} 40 A$ and $\mathrm{H} 40 B$ were located in a difference map and included in the refinement with $\mathrm{O}-\mathrm{H}$ distances restrained to 0.84 (1) \AA and $\mathrm{H} \cdots \mathrm{H}$ distances restrained to 1.37 (1) \AA. An antibumping restraint was also applied between atoms H 9 and H 40 A . In the refined water molecule, the $\mathrm{O} 40-\mathrm{H} 40 A$ distance is 0.854 (19) \AA, the $\mathrm{O} 40-\mathrm{H} 40 B$ distance is 0.84 (2) \AA and the $\mathrm{H} 40 A-\mathrm{O} 40-\mathrm{H} 40 B$ angle is $106.0(15)^{\circ}$.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97
(Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

The authors acknowledge the Royal Society of London (for University Research Fellowships to MAH), the EPSRC and the University of Leeds.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1561). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Deeney, F. A., Harding, C. J., Morgan, G. G., McKee, V., Nelson, J., Teat, S. J. \& Clegg, W. (1998). J. Chem. Soc. Dalton Trans. pp. 1837-1844.
Elhaïk, J., Money, V. A., Barrett, S. A., Kilner, C. A., Radosavljevic Evans, I. \& \& Halcrow, M. A. (2003). Dalton Trans. pp. 2053-2060.
Holland, J. M., Barrett, S. A., Kilner, C. A. \& Halcrow, M. A. (2002). Inorg. Chem. Commun. 5, 328-332.
Holland, J. M., McAllister, J. A., Kilner, C. A., Thornton-Pett, M., Bridgeman, A. J. \& Halcrow, M. A. (2002). J. Chem. Soc. Dalton Trans. pp. 548-554.

Holland, J. M., McAllister, J. A., Lu, Z., Kilner, C. A., Thornton-Pett, M. \& Halcrow, M. A. (2001). Chem. Commun. pp. 577-578.
Ikuta, Y., Ooidemizu, M., Yamahata, Y., Yamada, M., Osa, S., Matsumoto, N., Iijima, S., Sunatsuki, Y., Kojima, M., Dahan, F. \& Tuchagues, J.-P. (2003). Inorg. Chem. 42, 7001-7017.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Money, V. A., Elhaïk, J., Radosavljevic Evans, I., Halcrow, M. A. \& Howard, J. A. K. (2004). Dalton Trans. pp. 65-69.

Money, V. A., Radosavljevic Evans, I., Halcrow, M. A., Goeta, A. E. \& Howard, J. A. K. (2003). Chem. Commun. pp. 158-159.
Morgenstern-Badarau, I., Lambert, F., Deroche, A., Cesario, M., Guilhem, J., Keita, B. \& Nadjo, L. (1998). Inorg. Chim. Acta, pp. 234-241, 275-276.
Morgenstern-Badarau, I., Lambert, F., Renault, J.-P., Cesario, M., Marechal, J.-D. \& Maseras, F. (2000). Inorg. Chim. Acta, 297, 338-350.

Nagasato, S., Katsuki, I., Motoda, Y., Sunatsuki, Y., Matsumoto, N. \& Kojima, M. (2001). Inorg. Chem. 40, 2534-2540.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Paul, S., Barik, A. K., Butcher, R. J. \& Kar, S. K. (2000). Polyhedron, 19, $2661-$ 2666.

Paul, S., Barik, A. K., Peng, S. M. \& Kar, S. K. (2002). Inorg. Chem. 41, 58035809.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smithson, R. J., Kilner, C. A., Brough, A. R. \& Halcrow, M. A. (2003). Polyhedron, 22, 725-733.
Sunatsuki, Y., Sakata, M., Matsuzaki, S., Matsumoto, N. \& Kojima, M. (2001). Chem. Lett. pp. 1254-1255.
Yamada, M., Ooidemizu, M., Ikuta, Y., Osa, S., Matsumoto, N., Ijjima, S., Kojima, M., Dahan, F. \& Tuchagues, J.-P. (2003). Inorg. Chem. 42, 84068416.

Yang, S.-P., Tong, Y.-X., Zhu, H.-L., Cao, H., Chen, X.-M. \& Ji, L.-N. (2001). Polyhedron, 20, 223-229.
Yukinari, S., Ikuta, Y., Matsumoto, N., Ohta, H., Kojima, M., Iijima, S., Hayami, S., Maeda, Y., Kaizaki, S., Dahan, F. \& Tuchagues, J.-P. (2003). Angew. Chem. Int. Ed. 42, 1614-1618.

